TGF-β and Insulin Signaling Regulate Reproductive Aging via Oocyte and Germline Quality Maintenance
نویسندگان
چکیده
منابع مشابه
TGF-β and Insulin Signaling Regulate Reproductive Aging via Oocyte and Germline Quality Maintenance
Reproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood. Here, we show that TGF-β Sma/Mab and Insulin/IGF-1 signaling regulate C. elegans reproductive aging by m...
متن کاملInsulin Signaling Regulates Oocyte Quality Maintenance with Age via Cathepsin B Activity.
A decline in female reproduction is one of the earliest hallmarks of aging in many animals, including invertebrates and mammals [1-4]. The insulin/insulin-like growth factor-1 signaling (IIS) pathway has a conserved role in regulating longevity [5] and also controls reproductive aging [2, 6]. Although IIS transcriptional targets that regulate somatic aging have been characterized [7, 8], it was...
متن کاملTGF-β Family Signaling in Skeletal Development, Maintenance, and Disease
THE TRANSFORMING GROWTH FACTOR-β (TGF-β) FAMILY is critically involved in the development and maintenance of skeletal tissues. In searches for factors with potent cartilage and bone inductive activities, TGF-β was isolated as cartilage-inducing factor (Seyedin et al. 1987), whereas bone morphogenetic proteins (BMPs) were isolated as factors able to induce cartilage and bone formation (Urist 196...
متن کاملDrak2 Does Not Regulate TGF-β Signaling in T Cells
Drak2 is a serine/threonine kinase expressed highest in T cells and B cells. Drak2-/- mice are resistant to autoimmunity in mouse models of type 1 diabetes and multiple sclerosis. Resistance to these diseases occurs, in part, because Drak2 is required for the survival of autoreactive T cells that induce disease. However, the molecular mechanisms by which Drak2 affects T cell survival and autoim...
متن کاملLAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2010
ISSN: 0092-8674
DOI: 10.1016/j.cell.2010.09.013